If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2t^2+10t=3
We move all terms to the left:
2t^2+10t-(3)=0
a = 2; b = 10; c = -3;
Δ = b2-4ac
Δ = 102-4·2·(-3)
Δ = 124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{124}=\sqrt{4*31}=\sqrt{4}*\sqrt{31}=2\sqrt{31}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{31}}{2*2}=\frac{-10-2\sqrt{31}}{4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{31}}{2*2}=\frac{-10+2\sqrt{31}}{4} $
| -8(6-v)=-96 | | 32+x=3(x+6) | | 136=2(8n+1)+6 | | 3x+2x+x+54=180 | | n+7(n+1)=-3n-4 | | 3b-9=3b-9 | | 200=3^x | | 12x-5-9x=7 | | 4(b-3)+b=-17 | | 5=1+2(x-1) | | 9^-x-4=27 | | 7+x=100 | | 9x-2(x+14)=27 | | 55+x+75-x+2x=180 | | -11+3m=-23 | | -21=-6+2x+x | | 4x-15=-5-5x | | 3(x+7)-x+9=40 | | 22-2m=10 | | 4y^2=-13y | | 2/c-5=8/9 | | -36-4v=-8(-2v-3) | | 4x-11=37-8x | | -8x=3=-29 | | 10=8r+2r | | 5x+1/2(2x+6)=20 | | -6m=3m=-15 | | 2w=69 | | 8.51+10n=7.96n+0.1(n-2.2) | | 1/2x+2/3x-5/6=9 | | -16+6x=4+2(x+6) | | ¾x-5-2+¼x=7x-15 |